JPA Objects 1.0 Users Guide

RDBMS Persistence for Naked Objects 4.0.x
Version 0.1

Copyright © 2009 Dan Haywood

Permission is granted to make and distribute verbatim copies of this manual provided
that the copyright notice and this permission notice are preserved on all copies.

=10 < T \%

I 1 1 o [Tox o o PRSP PRPPRPRR 1
R Y O] o= o (= PSSR 1
R = 1= o [0S (2 2
2. JPA ODbjects/ Naked ODjeCtS RESIIICHIONScciuviiieiiiiiie et 3
2.1. Annotate with @ntity xor @nbeddabl €coooviiiiiii, 3
2.2. Annotate Properties, NOL FIEIASueiieiiiiiie e 4
2.3. Specify aprimary key using @ d (not using @ dd ass or @nbedded! d)cccvvveeennnn. 4
2.4. Specify a @xener at edType for the Id ... 4
2.5. SPECITY @ diSCIHIMINGALOLccovviiiiiiiiiie e 5
2.6. NO support for ENUMErated TYPESeooiiiieieeieiiee ettt e e 6
2.7. NO SUPPOIT FOr M@DS ...ttt e et e e e e e e 7
2.8. No support for Named Native Query (@NamedNat i VEQUET Y) ..uvvveiriireeiiiirieeeniieeee e 7
2.9. No support to access underlying JPA Persistence CONteXtcceeeevvviciviiieeeeeeeesiiiiiieeeeenn. 7
T @] o= Ta T 4] T 1Yo 18 gl =] S 9
G B OV VT T PP PRSP PRRRRR 9
3.2. Update the Parent MOAUIEoooiieiiiiiee e e e e 10
3.3. Create a new Maven submodule for JPA Service (Repository) Implementations................ 11
3.4. Reference the JPA Applib from the DOM Projectcooccuveeeiiiiiiieiiiieee e 12
3.5. Reference the JPA Service (Repository) Implementations from the fixture Project 12
3.6. Reference the JPA Runtime from the "App" Projecteevvveiiiiiiiieieeeeecciee e 13
BT AN (= 0= (AL o] o 0 o 13
4. Annotating DOmMaiN ODJECEScocuiiiiiiiiiiie et ee e 15
4.1, 1dentifying ENLTIESoeiiiiiiie e 15
4.2. BASIC PrOPEITIESeeeeiitiiie e ittt e ettt e sttt e e et e e e e asbb et e e ekt e e e e et e e e e e anbbe e e e nnnbeeeeeans 16
e T /= 0V (0 T PP PPRPR 16
A4, ONETO-ONE ..ottt ettt ettt 16
S @ 0= (0 o 1Y = 0 17
G\ =V (o Y/ =0 18
4.7. EMDEAdEd ODJECEScueveeieiiiieiee itttk e e e e e e e nree e 18
4.8, INheritance HIerarChiesooi i 19
4.9. PolymorphiC REIGHONSNIPSccoiiiiiiiiiiiiie e 20
5. IMplementing REPOSITOMIEScoiiiiiiiiiiiice e e e s e e e e e e s s s sarrrrereeaeeean 23
L3N R =7 To: (o (o0 o PSP 23
5.2. Annotating classes With @NAMBAQUET Yuuuuuueuiiiiiiiiiiiieninnnnnannnnnaannnannnnnnnnnnnannannsnnnnnnns 25
5.3. RePOSItOry IMPleMENEELIONo.vviieiiiiiiee e e e e e 25
5.4. ReQISIEriNg REPOSITONESeeiiiiiiiiieiiiiie ettt e s e e 26
L (= 4 o (o] SRR SOPRRRRR 26
6. SUPPOrting CUSLOM ValUE TYPESueeiiieiiiie e ettt e e e s st e e e e e e e e s e e e eaeeas 27
6.1. Naked Objects APPLID VaAUE TYPES ...ttt e e 27
6.2. CUSLOM VBIUE TYPES ..uuuuuuuuuinnununuuneununnnnnnnsnnnnsnnnnsnesnnneernensnresnar.........————.—....—.—————.—.—. 29
7. DEPIOYING JPA ODJECES ...eeieiiiiiieeiiiet ettt e e e e e s annneee s 33
7.1. Configure NaKed ODJECSuviieiiiiiieeiiiie ettt e e e s ee e 33
7.2. CoNfIgUIE HIDEIMEEEcooiiiiiiee it e e nbe e e e anes 34
7.3. RUN the SChemMa ManagEYcooiiiiiieiec e e s 34
7.4. RUN the FIXIUrE MaNaQEYcooeei ittt e et e e e e et ae e e e e e e e e s neareees 35
S T 1 g = G o] [ox SRRSO 37
8.1, OPIMISHIC LOCKING ..eeeeiitiiieeiiitie ettt e e e s e e e e e e nnn e e s 37

JPA Objects 1.0 Users Guide Contents

8.2. LITECYCIE LISIENEIS ...ttt e e e eeeane 38
8.3. Persistence by Reachability (Castading)ccceiiiiiiiiiiiieee e e 39
LS N I v YA I |1 o PR 40
8.5. Common Properties (@VBPPEASUPET Cl ASS) .uuuuururuiiiiiiiinnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnne 41
8.6. Retrieving ColleCtioNS IN OFdENooiiiiiiiiiiiieie e 41
8.7. Transient (NON-persisted) PrOPErtIESccoiiuiiiieiiiiiie e 42
8.8. HaNdIiNG EXCEPLIONSccciiuiiiieeiiiiiee ettt e e e e e e e 42
A. USiNG the Maven AFCRELYPEuuiiiiiiee et e e e e et r e e e e e e e s eanraees 43
A.1l Obtain the Claims APPlICAIONccciiiiiiiiee e e 43
A.2. Set up a Relational Databasecovvviiviiiiiiiiiieieeeeee e 43
A.3. RUN the JPA ATCRELYPE ...t 44
A.4. Update the Existing Project's Classpathccevviiiiiiiiiiic e 45
A.5. Update the CONfIQUIAIONccoiiuiiieiiiiiieeeiiiiee sttt e e snn e e e snneeeeaan 46
A.6. Update the DOMaiN ClaSSESuuviiiiiiee it ee e et e e e e e s e s e e e e e e s s ssasaaaaeaeaeeesans 47
A.7. BUID the SChEIMAeiiiiiiiii et e e e e e neeee s 47
AB. INSLaAll the FIXIUIES ... e e et e e e e e e et reeeeeeens 48
A9 RUN the APPIICALTIONooiiieiiei et e e e e e e e e e eeeeeaeeeens 48
B. ANNOtAtioNS REFEIENCEuviiiiiie e e e e e s r e e e e e s s snsbaaeeeeaeeeeaas 49
B.1. JAVAX.PEISISIENCEeeeieiiiiiie ettt e e ettt ettt e ettt ekttt e e e s 49
B.2. 0rg.nibernate.annOtatioNScccuiiiiiiiie e e s e e e s 52

Preface

JPA Objectsisasister project to Naked Objects, providing an implementation of an object storeto alow
Naked Objects domain models to be persisted to an RDBMS. As you might imagine from the name, the
domain objects are annotated using JPA annotations (j avax. j pa. Enti t y and so on). Hibernate is used
as the underlying JPA provider.

This user guide describes how to annotate your domain objects for use by JPA Objects, and how to
configure Naked Objects to use the objectstore provided by JPA Objects. It also describes how to use the
Maven archetype provided to ease devel opment.

JPA Objectsis hosted on SourceForge, and islicensed under Apache Software Licensev2. Naked Objects
is also hosted on SourceForge, and is aso licensed under Apache Software License v2.

http://jpaobjects.sourceforge.net
http://nakedobjects.org
http://hibernate.org
http://maven.apache.org
http://jpaobjects.sourceforge.net
http://www.apache.org/licenses/LICENSE-2.0.html

Chapter 1
Introduction

The Naked Objects framework provides several extension points, one of which is the Object Store API
used to persist domain objects. JPA Objects provides an implementation of this API to allow Naked
Objects domain models to be persisted to an RDBMS. Note that the abject store is also sometimes called
the "persistor”. For the purpose of this document the two are interchangeable’.

In fact, JPA Objects also implements another Naked Objects API, namely the reflector. This is the
component that is used to build up the metamodel. JPA Objects provides an extended version of the
standard reflector, alowing selected JPA annotations to be identified as declarative business rules. This
also alows JPA Objects to apply some validations on these annotations.

The project also provides a Maven archetype that includes a set of annotated classes and repository
implementations for the example 'claims' application that ships with Naked Objects. A run through of
using this archetypeis given in Appendix A, Using the Maven Archetype.

1.1. Key Concepts

Annotating Domain Classes

The most notable aspect of using JPA Objects is that we annotate our domain classes using the JPA
annotations(j avax. j pa. Enti t y and soon). Because JPA 1.0 does not capture enough semanticsfor our
purposes (eg thereisno support for polymorphic "any" relationships), we a so use Hibernate's annotations
in some circumstances, exposing the fact that Hibernate is the underlying JPA provider. We hope to
remove this dependency on Hibernate in a future release when we migrate to JPA 2.0.

Repositories Implementations

Implementations of repositories that are suitable for prototyping (that is, as used by in-memory object
store) are naive, because they iterate over all instances. As such, they not suitable for use by the JPA

Un fact, it isthe persistor API that JPA Objects actually implements. Under client/server remoting there is an alternative persistor
API that abstracts away the network.

http://nakedobjects.org
http://jpaobjects.sourceforge.net
http://maven.apache.org
http://hibernate.org

Introduction The JPA Objects AppLib

Objects; doing so would be equivalent to performing asel ect * from some_t abl e - with no where
clause - and then filtering client-side in Java.

Therefore, using JPA Objects requires us to provide implementations of repository interfaces. We use
named queries (@ avax. j pa. NamedQuer y) to simplify this task.

The JPA Objects AppLib

Like Naked Objects itself, JPA Objects a so provides an application library (or applib). And theintent is
the same: to minimize the coupling from your domain objects to the framework.

In the current release of JPA Objects the only classes in the applib are adapters to allow Naked Objects
valuetypesto be persisted as user-defined types. Thisisdiscussed further in Chapter 6, Supporting Custom
Value Types.

Bootstrapping

JPA Objects identifies the set of entities that make up the domain model by walking the graph from
the repositories. These are registered as services in Naked Objects nakedobj ect s. properti es
configuration file.

| mportant

If you have inheritance hierarchies then it may be necessary to create dummy actions on your
repositories so that all concrete subclasses are registered. The subclasses can appear either
as parameters or as return types, and the action can be annotated as @4 dden so that it does
not appear in the user interface.

In addition, nakedobj ect s. properti es istypicaly used to specify the persistor implementation, ie
JPA Objects own persistor.

There are further details on configuring Naked Objects and JPA Objects in Chapter 7, Deploying JPA
Objects.

1.2. Prerequisites

JPA Objects is intended to be used with Maven-based projects (hence the provision of the Maven
archetype). Prerequisites are therefore Maven2 and (highly recommended) an IDE with Maven support.
We use Eclipse + the m2eclipse plugin; both NetBeans and IntelliJ have built-in support for Maven.

http://m2eclipse.codehaus.org

Chapter 2
JPA Objects / Naked Objects

Restrictions

The intent of JPA Objectsisto alow you to exploit the knowledge you (may aready) have of JPA to set
up persistence for a Naked Objects applications. As such, most of the annotations of JPA can be used "in
the regular way". That said, JPA Objects does not support a number of annotations, either:

« by design, to enforce "best practice" for domain-driven applications;
* by necessity, because Naked Objects itself does not support the annotation;

« by happenstance; because JPA Objects implementation happens not to (though it could in the future).

Those in the first category are enforced through validation provided
by the metamode (provided by an implementation of Naked Objects
or g. nakedobj ect s. net anndel . specl oader . val i dat or . Met aMbdel Val i dat or interface).

This chapter describes these restrictions.

2.1. Annotate with @nt ity xor @nbeddabl e

Most domain classes will be annotated either as @ntity or, if an aggregated object, then as
@nbeddabl e. The principle exceptions to this will be classes that factor out common properties
(see Section 8.5, “Common Properties (@happedSuper cl ass)”) and also value types (see Chapter 6,
Supporting Custom Value Types).

It doesn't make sense for a domain class to be annotated using both @nt ity and @nbeddabl e. JPA
Objects metamode validator will therefore reject any domain model (that is, Naked Objects will fail to
boot) where adomain class is annotated with both.

JPA Objects also ensures that at least one classesisloaded annotated with @nt i ty.

JPA Objects / Naked Objects Restrictions Annotate properties, not fields

2.2. Annotate properties, not fields

Although JPA itself allows either fields or properties to be annotated, JPA Objects requires that only
properties are annotated. This is because the Naked Objects metamodel is built up from domain classes
by identifying methods only; fields are never used.

2.3. Specify a primary key using @d (not using @ dCl ass or @nbeddedI d)

JPA Objects requires that all entities have an @ d property (or inherit one from a superclass). If thisisn't
the case then JPA Objects' metamodel validator will throw an exception, and the application won't boot.

JPA Objects currently does not support composite primary keys. Specifically, the @ dd ass annotation
(which specifiesacomposite primary key class mapped to multiple properties of the entity) isnot allowed.
The @nbedded! d annotation (which is applied to a persistent property of an entity class or mapped
superclass to denote a composite primary key that is an embeddable class) is also not allowed.

This restriction is by design. Coupled with discriminators, JPA Objects can guarantee that every entity
instance can be identified in a standard fashion. See Section 2.5, “Specify a discriminator” for further
discussion.

In addition, the @ d property should be awrapper class, egj ava. | ang. | nt eger rather thani nt . This
allowsthe JPA provider (Hibernate) to distinguish between transient and persisted objectsif no @/er si on
property has been specified; transient objectshave anul | id.

2.4. Specify a @ener at edType for the Id

The @ d property should be automated populated by the database, rather than by Java code. What this
means that a @ener at edVal ue should be specified.

Note

This restriction may be lifted in future versions of JPA Objects.

For example:

i mport javax. persistence. Gener at edVal ue;

i mport javax. persistence. Generati onType;

i mport j avax. persi stence. |d;

i mport org. nakedobj ects. appl i b. annot ati on. Hi dden;

public class Customer {

I {{ 1d
private Long id;
@1 dden
@d
@ener at edVal ue(strat egy=Cener ati onType. SEQUENCE)
public Long getld() {
return id;

}
public void setld(Long id) {

JPA Objects / Naked Objects Restrictions Specify a discriminator

this.id = id;
}
11 }}

}

Because the |d key is automatically generated it generally has no meaning to the end-user, and therefore
should a'so be annotated as @+ dden. Thisisn't arequirement of JPA Objects, however.

The vaue of the @=ener at edVal ue's strategy isaGener at i onType:

e TABLE

Indicates that the persistence provider must assign primary keys for the entity using an underlying
database table to ensure uniqueness.

For this generation type, the @abl eGener at or can also be specified. This annotation defines a
primary key generator that may be referenced by name when a generator element is specified for the
GeneratedV a ue annotation. A table generator may be specified on the entity class or on the primary
key field or property. The scope of the generator name is global to the persistence unit (across all
generator types).

« SEQUENCE

Indicates that the persistence provider must assign primary keysfor the entity using database sequence
column.

For this generation type, the @equenceGener at or can also be specified. This annotation defines
a primary key generator that may be referenced by name when a generator element is specified for
the GeneratedV alue annotation. A sequence generator may be specified on the entity class or on the
primary key field or property. The scope of the generator name is global to the persistence unit (across
al generator types).

* | DENTITY
Indicates that the persistence provider must assign primary keys for the entity using database identity
column.

e AUTO
Indicates that the persistence provider should pick an appropriate strategy for the particular database.
The AUTO generation strategy may expect a database resource to exist, or it may attempt to create one.

A vendor may provide documentation on how to create such resources in the event that it does not
support schema generation or cannot create the schema resource at runtime.

To capture the ID for use within the domain object, see Section 8.2, “Lifecycle Listeners’.

2.5. Specify a discriminator

JPA Objects requires that al entities are annotated with @i scri m nat or Val ue. The JPA Objects
metamodel validator will ensurethisisunique (thoughiif it isn't, then the JPA provider itself - ie Hibernate
- would also throw up an exception).

JPA Objects 1.0 Users Guide (0.1) 5

JPA Objects / Naked Objects Restrictions No support for Enumerated Types

In "standard" JPA the @i scri mi nat or Val ue isonly used to distinguish between concrete subclasses
within inheritance hierarchies. JPA Objects makes this a mandatory requirement for all entities so that
every entity instance can be identified using the (discriminator, id) tuple.

Thistupleisvaluable for two reasons:

« from apersistence viewpoint thistuple can be reused for polymorphic relations, that is, as defined using
@\ny or @vanyToAny.

Naked Objects applications tend to be rather "purer" object models than domain models you might
have used in non-NO applications, and - following SOLID principles - are likely to use interfaces to
decouple classes in different modules. This does cause us to hit the object/relational mismatch though:
adecoupled object model cannot rely on an RDBM S to enforce referential integrity, hence the use of
polymorphic relations. See Section 2.5, “ Specify a discriminator” for more discussion on this.

« from an integration viewpoint, because thistupleisin effect a URN for each entity within the domain,
then it can (in serialized form) be used for interacting to other systems (or bounded contexts, if you are
use the domain-driven design jargon).

For example, a RESTful web service (eg as provided by Restful Objects) can use this URN with the
path representing aresource, eg to read an object's property or to invoke an action upon it. Or, amessage
can be published asynchronously, and the URN be used as a correlation Id for a response message.

The tuple is aso used internally by Naked Objects, in the
or g. nakedobj ect s. net anodel . adapter.oid. G d interface, used to maintain an identity
map of domain objects. JPA Objects provides an implementation of this interface,
org. starobjects.jpa.runtinme. persistence. oi d. Jpad d, whichis precisely thistuple.

Going back to the @i scri mi nat or Val ue, the recommended length is 3 or 4 characters. Putting this
together with the @ d, we get something like:
@ntity

@i scri m nator Val ue(" CUS")
public class Custoner {

private Integer id,;
@d

public Integer getld() { returnid; }
private void setld(Integer id) { this.id =1id }

}

So Customer with id=12345 would have aURN ("CUS", 12345). The serialized form of this (as provided
by JpaG d) is"CUS|12345".

See Section 4.9, “Polymorphic Relationships’ for further discussion on how this tuple is reused for
polymorphic relations.

2.6. No support for Enumerated Types

JPA Objects does not support enumerated types, because Naked Objects itself does not support
enumerated types. The JPA @numer at ed and @nunilype annotations may therefore not be used.

http://restfulobjects.sourceforge.net

JPA Objects / Naked Objects Restrictions No support for Maps

A good workaround is to use regular immutable ("reference data") entities, annotated with the Naked
Objects @ounded annotation. @ounded here means that there is a bounded, finite, set of instances;
you'll find that Naked Objects viewers will provide drop-down list boxes for these classes.

2.7. No support for Maps

JPA Objects does not support maps, only lists. This is because Naked Objects itself does not support
maps. The JPA @/apKey annotation may therefore not be used.

A workaround is for the entity to provide an action that runs a repository query to locate the required
object. One of the properties of the associated classwould act asitskey, but thisfact would not be exposed
in the domain model, only in the database schema. Alternatively, your domain object can build atransient
map from a persisted collection.

2.8. No support for Named Native Query (@anmedNat i veQuery)

JPA Objects does not currently support named native queries (the @NamedNat i veQuer y annotation),
only named queries (@anmedQuer y). See Chapter 5, Implementing Repositories for more details.

2.9. No support to access underlying JPA Persistence Context

JPA Objects does not currently provide any support to access the underlying JPA
Persistence Context (j avax. per si st ence. Per si st enceCont ext), nor to other abstractions such
as the javax. persi stence. EntityManager, javax. persistence. EntityManager Factory,
j avax. persi stence. EntityTransacti on Orj avax. persi st ence. Query.

This also means that the locking modes (per javax. persi stence. LockMbdeType and the
Entit yManager. | ock() method) cannot currently be specified.

JPA Objects 1.0 Users Guide (0.1) 7

Chapter 3
Organizing your Project

This chapter provides advice on how to organize your project so that you can set up dependencies in
Maven. Alternatively, you might want to run the Maven archetype - as described in Appendix A, Using
the Maven Archetype. This sets up the same general project structure as described in this chapter, though
some of the details as to how dependencies are resolved varies from the approach described below. See
Section 3.7, “ Alternative Approach” for more details.

3.1. Overview

If you ran the Naked Objects archetype then you'll have a Maven parent module with a number of child
modules:

xxx/ pom xm

xxX- donif pom xmi # domai n obj ect nodel

xxx-fixturel/ pom xm # fixtures for seeding object store

XXX-servi ce/ pom xnl # in-nenory object store inplenentations of repositories
xxx- conmand! i ne/ pom xm # for deploying as a commandl i ne, also for prototyping
XXX- webapp/ pom xm # for deploying as a webapp

Using JPA Objects means writing new repository implementations which will depend on JPA Objects. In
order to isolate those dependencies, we recommend that you create a new Maven submodule:

xxx/ pom xmi
xxx-donm pom xm
xxx-fixture/ pom xmi
XXX-servi ce/ pom xm
XXX-service-jpa/ pomxm # JPA object store inplenmentations of repositories
xxx- conmmand! i ne/ pom xml
xxx-webapp/ pom xni

In addition, the dom and fixture projects al so need updating, the dom project to reference the JPA Objects
applib and the fixture project in order to use the new JPA service implementations.

Organizing your Project Update the Parent Module

3.2. Update the Parent Module

To start with, we're going to have dependencies on JPA Objects, on a JDBC driver, and on SLF4J (used
by Hibernate). Add these to a<pr operti es> section:

<properties>
<j paobj ect s. ver si on>1. 0. 0</ j paobj ect s. ver si on> <!-- or whatever -->
<post gresql . jdbc. versi on>8. 3-603. j dbc3</ post gresqgl . j dbc. ver si on> <l-- eg for PostgreSQ
JDBC driver -->
<sl f4j.version>1.4.3</slf4j.version>
</ properties>

Next, in the parent modul€e's <dependencyManagenment > section, add in entries for:

» for JPA Objects:

<dependencyManagenent >
<dependenci es>

<dependency>
<groupl d>org. st arobj ects. j pa</ groupl d>
<artifactld>applib</artifactld>
<ver si on>${j paobj ects. ver si on} </ versi on>
</ dependency>

<dependency>
<gr oupl d>or g. st ar obj ect s. j pa</ gr oupl d>
<artifactld>runtinme</artifactld>
<ver si on>${ | paobj ect s. ver si on} </ ver si on>
</ dependency>

<dependency>
<groupl d>or g. st arobj ects. j pa</ gr oupl d>
<artifactld>tool s</artifactld>
<ver si on>${j paobj ects. ver si on} </ versi on>
</ dependency>

</ dependenci es>
</ dependencyManagenent >

Note that thiswill transitively bring in Hibernate
* for the JIDBC driver:

<dependencyManagenent >
<dependenci es>

<dependency>
<gr oupl d>post gr esql </ gr oupl d>
<artifactld>postgresql </artifactld>
<ver si on>${ post gresql . j dbc. versi on} </ ver si on>
</ dependency>

</ dependenci es>
</ dependencyManagenent >

« for SLF4J:

<dependencyManagenent >
<dependenci es>

<dependency>
<groupl d>or g. sl f 4j </ gr oupl d>
<artifactld>slf4j-api</artifactld>
<versi on>${sl f4j . versi on} </ versi on>

10

Organizing your Project Create a new Maven submodule for JPA Service (Repository)
Implementations

</ dependency>

<dependency>
<gr oupl d>or g. sl f 4j </ gr oupl d>
<artifactld>slf4j-1og4jl2</artifactld>
<versi on>${sl f 4j . version} </ versi on>

</ dependency>

<dependency>
<gr oupl d>or g. sl f 4j </ gr oupl d>
<artifactld>slfd4j-nop</artifactld>
<versi on>${sl f 4j . versi on} </ versi on>
<scope>t est </ scope>

</ dependency>

</ dependenci es>
</ dependencyManagenent >

Lastly, add areference to the new Maven submodule that will hold the JPA repository implementations:

<modul es>
<nodul e>donx/ nodul e>
<nodul e>fi xt ur e</ nodul e>
<nodul e>ser vi ce</ nodul e>
<nmodul e>servi ce-j pa</ nodul e> <!-- JPA inplenentations -->
<nodul e>comandl i ne</ nodul e>
<nodul e>webapp</ nodul e>
</ nodul es>

3.3. Create a new Maven submodule for JPA Service (Repository)
Implementations

The new xxx- ser vi ce-j pa submodule should have apom xm that looks something like:

<?xm version="1.0" encodi ng="UTF-8"?>
<proj ect xm ns="http://mven. apache. or g/ POM 4. 0. 0"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="http:// maven. apache. org/ POM 4. 0. 0 http:// maven. apache. or g/ maven-
v4_0_0. xsd">
<nodel Ver si on>4. 0. 0</ nodel Ver si on>

<nanme>JPA Servi ce | npl ement ati ons</ nanme>

<artifact!|d>xxx-service-jpa</artifactld> <!-- CHANGE -->
<par ent >
<gr oupl d>yyy</ gr oupl d> <l-- CHANGE -->
<artifactld>xxx</artifactld> <l-- CHANGE -->
<versi on>zzz</ versi on> <l-- CHANGE -->
</ parent >

<dependenci es>

<l-- project nodules -->

<dependency>
<gr oupl d>yyy</ gr oupl d> <l-- CHANGE -->
<artifact!ld>xxx-donx/artifactld> <l-- CHANGE -->

</ dependency>

<l-- jpa objects -->

<dependency>
<groupl d>or g. st ar obj ect s. j pa</ gr oupl d>
<artifactld>runtine</artifactld>

JPA Objects 1.0 Users Guide (0.1)

11

Organizing your Project Reference the JPA Applib from the DOM Project

</ dependency>

<!-- postgres JDBC driver -->
<dependency>
<groupl d>post gresql </ gr oupl d>
<artifactld>postgresql </artifactld>
</ dependency>

<l-- SLF4j binding (used by H bernate) -->
<dependency>
<gr oupl d>or g. sl f 4j </ gr oupl d>
<artifactld>slf4j-api</artifactld>
</ dependency>

<dependency>
<gr oupl d>or g. sl f 4j </ gr oupl d>
<artifactld>slf4j-1o0g4j12</artifactld>
</ dependency>

<dependency>
<gr oupl d>or g. sl f 4j </ gr oupl d>
<artifactld>slf4j-nop</artifactld>
<scope>t est </ scope>

</ dependency>

</ dependenci es>
</ proj ect >

3.4. Reference the JPA Applib from the DOM Project

In the xxx- domproject, reference the JPA Objects applib in the <dependenci es> section:

<dependenci es>
<dependency>
<groupl d>org. st arobj ects. j pa</ gr oupl d>
<artifactld>jpa-applib</artifactld>
</ dependency>

</ dependenci es>

Thiswill transitively bring in the JPA (j avax. per si st ence) annotations.

3.5. Reference the JPA Service (Repository) Implementations from the
fixture Project

In the xxx-fixture project, reference the JPA services implementations module in the <dependenci es>
section:

<dependenci es>

<dependency>
<gr oupl d>%{ pr oj ect . gr oupl d} </ gr oupl d>
<artifact|d>xxx-jpa-service</artifactld>
</ dependency>

</ dependenci es>

12

Organizing your Project Reference the JPA Runtime from the "App" Project

TODO: | can't recall why this is needed; hence the lack of commentary here. There's probably a good
reason, but it escapes me...

3.6. Reference the JPA Runtime from the "App" Project

Either the commandline or the webapp project, update the <dependenci es> section to reference the new
JPA implementations:

<dependenci es>

<dependency>
<gr oupl d>${ pr oj ect . gr oupl d} </ gr oupl d>
<artifact!d>xxx-j pa-service</artifactld>
</ dependency>

</aébendencies>
Thiswill transitively bring in the JPA Objects runtime libraries.

In addition, you will want to run a couple of tools that are used to deploy the application (see Chapter 7,
Deploying JPA Objects for more details). The commandline app is probably as good a place as any to
reference these tools. Therefore, also add in:

<dependenci es>

<dependency>
<groupl d>or g. st arobj ect s. j pa</ gr oupl d>
<artifactld>tool s</artifactld>

</ dependency>

</ dependenci es>

3.7. Alternative Approach

Analternate approach for setting up dependencies (and the one used that isused in the archetype) isto have
the xxx- j pa- ser vi ce module inherit from or g. st ar obj ect s. j pa: r el ease rather than the parent
module. Or, you could perhaps have the parent moduleinherit fromor g. st ar obj ect s. j pa: r el ease.
Doing it thisway meansthat it isn't necessary to add entriesto <dependencyManagenent > because they
are inherited. However, Maven2 does only allow a single parent, so this may not be an option for you if
you want to use some other POM as your parent.

JPA Objects 1.0 Users Guide (0.1) 13

Chapter 4
Annotating Domain Objects

Thischapter providesan overview on how to annotate domain objectsusing JPA. Itisn't comprehensive by
any means, but should deal with most of the common cases. Hunt out a book dedicated to JPA persistence
(such aslike Bauer/King's Java Persistence with Hibernate) for amuch more thorough treatment. See also
Appendix B, Annotations Reference for an overview of the supported annotations.

4.1. ldentifying Entities

Domain classes that are persistent entities - which is most of them - should be annotated
using j avax. persistence. Entity. In addition - as described in Chapter 2, JPA Objects /
Naked Objects Redtrictions - JPA Objects requires that all entities are annotated using
j avax. persi stence. @i scrim natorVal ue and must define a single property to act as the
identifier, annotated using @ avax. per si st ence. | d. The type of this Id property will depend on the
number of instances expected, but will generally beone of j ava. | ang. | nt eger, j ava. | ang. Long.

JPA Objects itself does not care how the values for the property are generated. It's usually easiest to get
the RDBM S to generate the I1Ds, using a sequence or identity (or perhaps atable). Thisis specified using
the @ avax. per si st ence. Gener at edVal ue annotation.

@ntity

@ scrim nat or Val ue(" CUS")
public class Custoner {

private |nteger id;

@d

@=ner at edVal ue(strat egy=CGenerati onType. AUTO)
public Integer getld() { ... }

private void setld(Integer id) { ... }

}

Other generation strategiesinclude SEQUENCE, IDENTITY and TABLE. Notethat it isn't necessary for
the setter to have public visibility.

15

http://www.amazon.com/Java-Persistence-Hibernate-Christian-Bauer/dp/1932394885

Annotating Domain Objects Basic properties

For very large rangesit isalso possibleto usej ava. | ang. Bi gl nt eger . Thisisn't a datatype supported
out-of-the-box by JPA, but Hibernate can be made to support it. See for example this blog post for details
on how.

Alternatively, you can take control yoursalf, and hook into JPA's @r ePer si st lifecycle method.

4.2. Basic properties

Vaue properties are mapped in JPA using the j avax. per si st ence. @asi ¢ annotation. In Naked
Objects terms, this means properties whose return type is a built-in value type: specificaly primitives,
String,java.util.Date (and its subclasses), j ava. sql . Ti mest anp, j ava. mat h. Bi gDeci mal ,
j ava. mat h. Bi gl nt eger. It is aso possible to map custom value types (that is, annotated with
or g. nakedobj ect s. appl i b. annot ati on. @/al ue); see Chapter 6, Supporting Custom Value Types
for more details.

A property annotated with @asi ¢ will correspond to a column in a database table. JPA will map - to
an appropriate SQL type - al of the built-in value types supported by Naked Objects. The other types
supported by JPA -j ava. uti | . Cal endar, and arrays of primitives and wrappers, and enums - are not
supported by Naked Objects as value types.

JPA does also alow a property whose type is serializable to be annotated with @asi c. However, it will
be stored in the database as a blab. Thisis therefore not arecommended approach; better isto implement
acustom value type.

Properties of typej ava. uti | . Dat e can be annotated using @ avax. per si st ence. Tenpor al . This
provides a hint as to the SQL typeto use: DATE, TIME or TIMESTAMP.

4.3. Many-to-One

The @ avax. per si st ence. Many ToOne annotation defines a single-valued association to another entity
class that has many-to-one multiplicity. In Naked Objects terms this is a property whose return type is
another entity. In databaseterms, thisislikeaforeign key. The @vany ToOne annotation goesinthe " child"
entity, specifically on the property that pointsto the "parent” entity.

It is not normally necessary to specify the target parent entity explicitly since it can usually be inferred
from the type of the object being referenced.

The @v/any ToOne sometimes combines with the @neToMany annotation in the parent entity, making the
association bidirectional. See Section 4.5, “ One-to-Many” for more details.

4.4. One-to-One

The @ avax. per si st ence. OneToOne annotation defines a single-valued association to another entity
that has one-to-one multiplicity. In Naked Objects' terms this is again a property whose return type is
another entity.

Infact, thisisjust a special case of @/anyToOne. In the database we again end up with aforeign key in
the referencing entity to the referenced entity.

16

http://www.cyclopsgroup.org/members/jiaqi/2007/04/custom-idgenerator-for-jpa-gap-between.html

Annotating Domain Objects One-to-Many

It is not normally necessary to specify the associated referenced entity explicitly since it can usually be
inferred from the type of the object being referenced.

4.5. One-to-Many

The @ avax. persi st ence. OneToMany annotation defines a many-valued association with one-to-
many multiplicity. In Naked Objects terms thisis a collection (or any of its subtypes). As discussed in
Section 2.7, “No support for Maps’, Naked Objects does not support j ava. uti | . Maps.

It's very common for collections relationships to be bidirectional, with that the referenced "child" entity
having a corresponding back reference to its owning parent entity using @vanyToOne. In this case the
foreign key that the @/any ToOne requires can also be used to navigate from the parent to the child. We
indicate this bidirectionality using the mappedBy attribute. In the parent we have:

@ntity

@i scrim natorVal ue(" ORD")
public class Oder {

private List<Orderltem> itens = new ArraylLi st<Orderltenp;
@neToMany(mappedBy="or der")

public List<Orderlten> getltens() { ... }
private void setltens(List<Orderltem> itens) { ... }

}

and in the child we have:
@ntity
@i scrim natorVal ue("ORI ")

public class Oderltem{

private Order order;

@manyToOne
public Order getOrder() { ... }
public void setOrder(Order order) { ... }

}

If the collection is defined using genericsto specify the element type (as above), the associated entity type
need not be specified; otherwise the entity class must be specified.

The above codeisn't complete by the way; for bidirectional relationships you'll need to write code to keep
the links in sync. The mutual registration pattern for this; see for example Dan's DDD book for more
detailsif you aren't familiar with it.

On occasion you may have a requirement only for the one-to-many collection in the parent, and no
back reference from the child back. From an annotations perspective just omit the mappedBy attribute.
However, it's worth being aware that the database schema will be quite different. Because there is no
foreign key inthechildtableto use, Hibernatewill create alink table consisting of the (parent_id, child_id)
tuples. Retrieving the children of a collection means Hibernate will need to this query thislink table and
join across to the child entity table.

JPA Objects 1.0 Users Guide (0.1) 17

http://pragprog.com/titles/dhnako

Annotating Domain Objects Many-to-Many

4.6. Many-to-Many

The @ avax. per si st ence. Many ToMany annotation defines a many-val ued association with many-to-
many multiplicity. In Naked Objects terms this means two entities each referencing a collection of the
other.

As you may well know, many-to-many associations in a relational database always require a link (or
associativetable), consisting of the primary keys of each of the entities. Note the similarity to the mapping
of aunidirectional @neToMany association (see Section 4.5, “One-to-Many”), which in thislight can be
thought of as a special case of @vany ToMany. Indeed the same annotation elements for the @neToMany
annotation apply to the ¢ annotation.

Every many-to-many association hastwo sides, the owning side and the non-owning, or inverse, side. The
jointableis specified onthe owning side. If the associationis bidirectional, either side may be designated
asthe owning side. If the Collection is defined using generics to specify the element type, the associated
entity class does not need to be specified; otherwise it must be specified.

4.7. Embedded Objects

An embedded object is one that is wholly owned by a parent entity, in the UML compositional (*colour
in the black diamond") sense. Using domain-driven design terminology it is an aggregated object (with
its owning entity the aggregate root).

The @ avax. per si st ence. Enbeddabl e annotation defines an embedded object, that is, aclasswhose
instances are stored as an intrinsic part of an owning entity and share the identity of the entity. Note that
@nbeddabl e entities must not also be annotated with @ntity. They aso do not have an @ d. That's
because each of the persistent properties of the embedded object is mapped to the database table for the
entity. JPA restricts the embedded objects to only consisting of @asi ¢ (vaue) properties.

Having defined an embeddable class, the owning entity defines an association using the
@ avax. per si st ence. Enbeddabl e annotation. In Naked Objectstermsthisisaproperty whosereturn
typeisthe @nbeddabl e class. For example, consider an Addr ess class:

@nbeddabl e
public class Address {

private |Integer houseNunber;

@Basi ¢
public Integer getHouseNunber() { ... }
public void setHouseNunber (I nteger houseNumber) { ... }

private String streetNang;

@asi c
public String getStreetNane() { ... }
public void setStreetNane(lnteger streetName) { ... }

}

The owning root Cust orrer entity might look like:

@ntity
@i scrim nator Val ue(" CUS")
public class Custoner {

18

Annotating Domain Objects Inheritance Hierarchies

private Integer id;

@d

@=ener at edVal ue(strat egy=CGener ati onType. AUTO)
public Integer getld() { ... }

private void setld(Integer id) { ... }

private Address address;
@nbedded
public Address getAddress() { ... }

}

Although JPA defines the @nbedded! d annotation (to indicate a property whose type represents a
composite primary key that is an embeddable class), JPA Objects does not support this (because in JPA
Objects all primary keys must be simple, not composite).

4.8. Inheritance Hierarchies

JPA supports (implementation) inheritanceusing the @ avax. per si st ence. | nheri t ance annotation,
and thisisfully supported by JPA Objects. The annotation is used to determine how to map clases, using
the strategy attribute to specify the | nher i t anceType enum:

* | nheritanceType. SI NGLE_TABLE

A single table per class hierarchy

* | nheritanceType. TABLE_PER_CLASS

A table per concrete entity class

* | nheritanceType. JO NED

A strategy in which fields that are specific to a subclass are mapped to a separate * table than the fields
that are common to the parent class, and ajoin is performed * to instantiate the subclass.

The @ nher i t ance annotation goes on the superclass.

For the SI NGLE_TABLE and JO NED inheritance mapping strategies a further column is added to the
table which is used to specify the concrete subclass that the data held in the table corresponds. For the
JO NED mapping it also effectively specifiesthe subclasstableto join to. Typically the column name and
typeis specified explicitly onthe superclassusing the @ avax. per si st ance. Di scri mi nat or Col utm
annotation; the @i scri i nat or Val ue annotation is then used on the subclasses to specify the values
that go into this column.

Aswe've already noted though in Section 2.5, “ Specify adiscriminator”, JPA Objects aways requires an
@i scri nmi nat or Val ue to be specified. Rather than invent adhoc discriminators for each inheritance
hierarchy, JPA Objectsin effect forces us to standardize the values across the entire domain model.

What this also means is that, if a @i scrimnatorCol um has been specified, then the
di scri mi nat or Type (if specified) must beDi scri m nat or Type. STRI NG. The length should be long
enough for the longest discriminator; alength of 3 is generally sufficient.

JPA Objects 1.0 Users Guide (0.1) 19

Annotating Domain Objects Polymorphic Relationships

4.9. Polymorphic Relationships

A polymorphic relationship is one where the referenced type could be any entity. For example, a class
that has a property of type java.lang.Object would be polymorphic; this property - if persisted - could
point to any object in the database.

More typically though polymorphic relationships arise when we have decoupled two classes so that one
references the other through an interface. Since there could be many implementors of the interface, we
again have a polymorphic relationship.

Thisis one areawhere we hit alimitation of relational databases. A foreign key requires aprimary key to
reference. However, it isn't practical to map every domain class as a member of an inheritance hierarchy
with j ava. | ang. Cbj ect asitsroot. Consider: if we used the JO NED strategy, every retrieval would
involve aquery against the obj ect table and then down to the subclass table.

Instead we abandon the use of referential integrity in the database. Instead, we just store the object
reference in two parts: by identifying the concrete class of the referenced object, and the identifier of the
referenced object. Note how thisis the same tuple discussed in Section 2.5, “ Specify a discriminator”.

The approach mandated by JPA Objects unifies two relating requirements: that of discriminating concrete
classes within an inheritance hierarchy, and of discriminating instances throughout the entire database.

In practical terms, we map a polymorphic relationship using the @r g, hi ber nat e. annot at i ons. Any
for areferenceto asingle object, and @ avax. per si st ence. ManyToAny annotation for acolleciton of
references. For example, suppose we have a Vehi cl e can be owned either by an individual Per son or
be owned by aConpany (such asafleet car). In the domain model both Per son and Conpany implement
Vehi cl eOmner :

@ntity

@i scri m nator Val ue(" PRS")

public class Person inplenents VehicleOwer { ... }
and

@ntity

@i scrim nator Val ue(" CPY")

public class Conpany inplenents VehicleOwer { ... }

IntheVehi cl e classwe use @ny along with @G\nyMet aDef to identify these concrete implementations:

@ntity
@i scrim natorVal ue(" VEH")
public class Vehicle {

@ny(
net aCol um=@2Col umm(name="owner _type" , |ength=3),
f et ch=Fet chType. LAZY
)
@\ny Met aDef (
i dType="1| ong", netaType="string" ,
net aVal ues={
@kt aVal ue(target Entity=Person. cl ass, val ue="PRS"),
@kt aVal ue(target Entity=Conpany. cl ass, val ue="CPY")
}
)
@ oi nCol um(nanme="owner _i d")
public VehicleOwmer getOwer() { ... }

20

Annotating Domain Objects Polymorphic Relationships

public void set Owmer (Vehicl eOwmer owner) { ... }

}

Inthevehi cl e table (for Vehi cl e class) thiswill giveriseto atwo-part tuple (owner_type, owner_id),
that collectively identifies the object that is acting as a Vehi cl eOaner . The owner_type takes the value
"PRS" for Per son, in which case the owner_id contains a person Id from the per son table; if it takes
"CPY" then owner_id contains the company Id from the conpany table. Note that thistupleis, in effect,
the JpaQ d for the object (again, see Section 2.5, “ Specify adiscriminator”).

The @r g. hi ber nat e. annot at i ons. ManyToAny similarly has a lew of annotions. If for example a
Vehi cl e could have multiple owners, we would have:
@ntity

@i scrim nat or Val ue(" VEH")
public class Vehicle {

@manyToAny (

met aCol um = @ol um(narme = "owner _type")
)
@\nyMet aDef (

i dType = "integer", netaType = "string",

met aVal ues = {
@kt aVal ue(targetEntity
@kt aVal ue(targetEntity

Per son. cl ass, val ue="PRS"),
Conpany. cl ass, val ue="CPY")

}
)
@ascade({ org. hi bernate.annotations. CascadeType. ALL })
@oi nTabl e(

nanme = "vehicl e_owners",

j oi nCol ums = @oi nCol um(nane = "vehicle_id"),

i nver seJoi nCol ums = @oi nCol um(nanme = "owner_id")
)
public List<Property> getOwmers() { ... }
private void set Omers(List<VehicleOawer> owners) { ... }

}

Thiswould giverisetoavehi cl e_owner s link table, whose columnswould be (vehicle_id, owner_type,
owner_id). The vehicle_id identifies the Vehi cl e whose owners we are interested in; the owner_type,
owner_id together identify the owner (either Per son or Conpany).

JPA Objects 1.0 Users Guide (0.1) 21

Chapter 5
Implementing Repositories

Repositories are used to obtain references to (persisted) entities. The implementation of these repositories
depends on the object store in use; those for the in-memory objectstore won't be suitable for use with
JPA Objects because they naively iterate over all instances. You'll therefore need to re-implement
your repositories. And for this reason it's best practice to define an interface for your repositories
(or indeed any domain service). You can then switch in different implementations just by editing
nakedobj ect s. properti es (see Section 7.1, “ Configure Naked Objects’).

It's good practice to put your JPA implementations into a separate Maven module. That way, you can
isolate the dependencies on JPA Objects itself just to the code that needs it. The Maven archetype that
comes with JPA Objectsis designed to work this way; see Appendix A, Using the Maven Archetype for
more details.

To understand what goes into the JPA Objects repository implementations, let's start with a little
background.

5.1. Background

Naked Objects provides generic repository support through its convenience adapter classes in the
Naked Objects applib. Although not mandatory, it's easiest to have domain objects inherit from
or g. nakedobj ect s. appl i b. Abst r act Donmi nObj ect and repositories - while prototyping at least
- inherit from or g. nakedobj ect s. appl i b. Abst r act Fact or yAndReposi t or y. These both inherit
fromor g. nakedobj ect s. appl i b. Abst r act Cont ai nedQbj ect , whichin turn provides a Container
property to alow the Donmai nQbj ect Cont ai ner to be injected. The Domai nObj ect Cont ai ner in
effect is the generic repository.

Alsoin Abst r act Cont ai nedChj ect are some convenience methods for searching, each of which just
delegates to similarly named methods in Domai nObj ect Cont ai ner . First and most straightforwardly
we can request al instances of agiven entity class:

e alllnstances(C ass<T> of Cl ass): List<T>

But it is aso possible to request all instances matching either a condition. This can be expressed in one
of four ways.

23

Implementing Repositories Background

al | Mat ches(d ass<T> of Class, String title): List<T>

With this method we search by title. This makes sense for those classes where the title is relatively
small and known to be unique. However, Naked Objects does not itself mandate uniquetitles; they are
just labels that are unique "enough" for the objects being viewed by the end-user. Thisis aso not a
good option if the title changes, eg reflecting the state of the object

e all Matches(C ass<T> of Class, T pattern): List<T>
Here we search using a pattern object, sometimes called query-by-example. Only instances whose
values match those of the (set) properties of the pattern instance are returned.

e all Matches(Cd ass<T> of Class, Filter<T> filter): List<T>
The Fi | t er <T> interface (defined in the Naked Objects applib) acts as a predicate, so the method
returns only those instances that meet the filter.

e all Mat ches(C ass<T> of C ass, Query<T> query): List<T>
Thismethodissimilar totheonefor filtering, returning thoseinstancesthat meet the query specification.
(Again, Quer y<T> is defined in the Naked Objects applib).

There are similar methods to find the first instance:

e firstMatch(d ass<T> of Class, String title): T

e firstMatch(d ass<T> of Class, T pattern): T

e firstMatch(d ass<T> of d ass, Filter<T> filter): T

e firstMatch(d ass<T> of d ass, Query<T> query): T

There are also methods to find the first and only (unique) instance:

e uni queMat ch(d ass<T> of ass, String title): T

e uni queMat ch(C ass<T> of Class, T pattern): T

e uni queMat ch(d ass<T> of Class, Filter<T> filter): T

* uni queMat ch(Cl ass<T> of Cl ass, Query<T> query): T

The difference between Fi | t er <T> and Quer y<T> in these methods comes down to where the predicate
is evaluated. With Fi | t er <T>, the evaluation is in Java. What that means is that all instances are
returned from the object store. In contrast Quer y<T> the evaluation is performed by the object store
implementation. For JPA Objects, it ultimately corresponds to the "WHERE" clausein a SQL SELECT
statement.

For prototyping you'll find that the first three of these are supported by both the in-memory object store
and aso by the XML object store. Indeed, every object store is likely to support these, because all they
simply require that the object store can return all instances of a class. However, the version accepting
Quer y<T> isdifferent; because the Quer y<T> is evaluated in the object store, its implementation will in
general be specific to the object store.

That said, there is in fact a default implementation of Quer y<T>, namely Quer yDef aul t <T> (in the
Naked Objects applib, again). Thisimplementation simply holdsonto aquery name and aset of parameter/
argument pairs.

24

Implementing Repositories Annotating classes with @amedQuery

The in-memory object store and XML object store do not support Quer y<T> in any way. JPA Objects
does support Quer y<T>, through Quer yDef aul t <T>. And this is what we use in our repository
implementations.

5.2. Annotating classes with @anedQuery

JPA aready defines a mechanism for defining queries, with the @ avax. per si st ence. NanmedQuery
and @ avax. per si st ence. NanedQuer i es annotations. In theory these can be annotated on any class,
but by convention they go on the class being returned.

For example, we might want to search for Cust omer s by their i d, or by their sur nane (family name):

@NanedQueri es({
@amedQuer y(nane="fi ndCust oner Byl d", query="from Custoner where id=:id"),
@NamedQuer y(nane="fi ndCust oner sBySur nane", query="from Custonmer where surnane=:surnane"),
3]
@ntity
@i scrim nator Val ue(" CUS")
public class Custoner {

@d

public Integer getld() { ... }
@Basi ¢
public String getFam | yNane() { ... }

}

These named queries are then referenced in the repository implementations, covered next (Section 5.3,
“Repository Implementation”).

5.3. Repository Implementation

The repository implementations bring together the JPA @lanedQuery annotation (see Section 5.2,
“Annotating classes with @amedQuery”) along with the Quer yDef aul t <T> class (introduced in
Section 5.1, “Background”).

For example, aCust omer Reposi t or y implementation might be:

public class CustonerRepositoryJpa inplenments CustonerRepository {

public List<Custoner> findCustonerByld(lnteger id) {
return firstMatch(
QueryDefaul t. create(
"findCust onerByl d",
"idh, oid);
}

public List<Custoner> findCustonersBySurnanme(String surnanme) {
return al | Mat ches(
QueryDefaul t. create(
"fi ndCust oner sBySur nane",
"surnane", surname

JPA Objects 1.0 Users Guide (0.1) 25

Implementing Repositories Registering Repositories

));

}

The first argument for Quer yDef aul t. creat e() should be the name of the query (it doesn't need
to be the same as the method name, but that's a sensible convention to follow). The remaining
arguments go in pairs, alternating between the parameter name and the argument value. For example,
the ":id" in the @NanedQuery annotation corresponds to the second argument "id" in the call to
QueryDefaul t.create().

5.4. Registering Repositories

Once the repositories are written, they should be registered in nakedobj ects. properties. See
Section 7.1, “Configure Naked Objects’ for more details.

5.5. Restrictions

JPA Objects currently does not support either native named queries (see Section 2.8, “No support for
Named Native Query (@NamedNat i veQuer y)”) nor the creation of queries using Hibernate criteria (see
Section 2.9, “No support to access underlying JPA Persistence Context”). These limitations will be
addressed in a future version (most likely with an upgrade to JPA 2.0).

26

Chapter 6
Supporting Custom Value Types

While Naked Objects supports asimilar set of value typesto JPA, it also allows custom value typesto be
defined using the @val ue annotation. In addition to the built-in and custom value types, Naked Objects
also hasits own set of its own value types, such as Money and Per cent age . Thesereside in the Naked
Objects applib, inthe or g. nakedobj ect s. appl i b. val ue package.

Solong asavaluetypeisserializable, then JPA will be ableto savethe valuein the database. However, the
value will be stored as a blob, meaning for example it won't be possible to query on it within repositories.
And if the value type is not serializable, then JPA will not be able to saveit at all.

Hibernate provides a solution to this by alowing us to write (what it cals) user-
defined types, through either the org. hi bernate. usertype. User Type interface (for values
that are persisted in a single column) or the org. hi ber at e. usertype. Conposi t eUser Type
(for more complex values that are persisted to multiple columns). These are analogous to
the or g. nakedobj ect s. appl i b. adapt er s. Val ueSenant i csPr ovi der s that accompany Naked
Objects own @/al ue annotation: aVal ueSemant i csPr ovi der instructs Naked Objects viewers how
to interact with acustom value, while aUser Type instructs Hibernate how to persist/retrieve avalueinto
a database table.

The JPA Objects Application Library (or AppLib, see the section caled “The JPA Objects
AppLib®) defines severa convenience superclasses to help write these User Type implementations.
There are aso out-of-the-box implementations to support Naked Objects own value types (such as
or g. nakedobj ect s. appl i b. val ue. Money). Let's start off with these.

6.1. Naked Objects AppLib Value Types
Suppose we want to capture aPer son's favorite colour, and choose to do this using Naked Objects built-
inorg. nakedobj ect s. appl i b. val ue. Col or valuetype:

i nport org. nakedobj ects. appl i b. val ue. Col or;

@ntity
@i scrim natorVal ue("PRS")
public class Person {

27

Supporting Custom Value Types Naked Objects AppLib Value Types

public Col or getFavoriteColor() { ... }
}

Only a single column is needed to encode the value, so the JPA Objects applib provides
org. starobjects.jpa.applib.usertypes. Col or Type, a User Type implementation to persist
Col or s. Here'show we use it:

i mport org. nakedobj ects. appl i b. val ue. Col or;

i mport org.starobjects.jpa.applib.usertypes. Col or Type;
i mport org. hi bernate. annot ati ons. Type;

i mport org. hi bernate. annot ati ons. TypeDef;

i mport org. hi bernate. annot ati ons. TypeDef s;

@ntity
@i scrim nator Val ue(" PRS")

@ypeDefs({
@vypeDef (nane="nof col or", typeC ass=Col or Type. cl ass)

}

public class Person {

@vype(type="nofcolor")
public Col or getFavoriteColor() { ... }

}

This sets up the "nofcolor" as an alias to the Col or Type, and then says to use this alias for the
favoriteCol or property.

WEe'll have alook at the Col or Type implementation in the below; if you skip ahead you'll see that the
value stored isin fact an integer (corresponding to Col or #i nt Val ue() method and the #Col or (i nt)
constructor).

Most of the other Naked Objects value types are also mapped using simple User Types. The exception
is Money, which is mapped as a composite (a string column for the currency iso code, and a numeric
amount). For example, if there is also a property of type Money for our fictitious Per son class, then we
would have:

i mport org. nakedobj ects. appl i b. val ue. Mbney;

i mport org.starobjects.jpa.applib.usertypes. MneyType;
i mport org. hi bernate.annot ati ons. Type;

i mport org. hi bernate. annot ati ons. TypeDef;

i mport org. hi bernate. annot ati ons. TypeDef s;

@ntity
@i scri m nator Val ue(" PRS")
@vypeDefs({
@ypeDef (nane="nof col or", typed ass=Col or Type. cl ass),
@vypebDef (nane="nof noney", typeC ass=MoneyType. cl ass)
b

public class Person {

@vype(type="nof noney")
public Mney getSalary() { ... }

28

Supporting Custom Value Types Custom Value Types

Now we've seen how to use JPA Objects predefined user types, let's see how to write them for our own
value types.

6.2. Custom Value Types

Simple Types (I nmut abl eUser Type)

Simple types are those that can be mapped using a single column (such as Col or, above). For these
we subclass from or g. st arobj ects. j pa. appl i b. usertypes. | nmut abl eUser Type. Here's the
implementation of Col or Type:

package org. starobjects.jpa.applib.usertypes;

i mport java.sql.PreparedStatenent;
i nport java.sql.ResultSet;
i nport java.sql.SQ.Exception;

i nport org. hi bernate. H bernat e;
i mport org. nakedobj ects. appli b. val ue. Col or;

public class Col or Type extends | mut abl eUser Type {

public Object null Saf eGet (
final ResultSet rs,
final String[] nanes,
final Object owner) throws SQ.Exception {
final int color = rs.getlnt(names[0]);
if (rs.wasNull()) {
return null;
}

return new Col or(color);

}

public void null Saf eSet (
final PreparedStatenent st,
final Object val ue,
final int index) throws SQ.Exception {

if (value == null) {
st.setNul |l (i ndex, Hi bernate.|NTEGER. sql Type());
} else {

st.setlnt(index, ((Color) value).intValue());

}
}

public O ass<Col or> returnedC ass() {
return Col or.cl ass;

}

public int[] sql Types() {
return new int[] { H bernate.|NTEGER sql Type() };
}

Thenul | Saf eGet () method is used to extract the value from the SQL Resul t Set and instantiate the
Col or object. Conversely thenul | Saf eSet () method is used to read datafrom the provided Color and
set up the SQL Pr epar edSt at enent so the value can be inserted or updated. The other two methods
describe the structure of the data being read/written.

JPA Objects 1.0 Users Guide (0.1) 29

Supporting Custom Value Types Composite Types (I mmut abl eConposi t eUser Type)

Composite Types (I mut abl eConposi t eUser Type)

Composite types are those that are mapped using more than one column (such as Money, above). For
these we subclass from or g. st ar obj ect s. j pa. appl i b. usertypes. | mut abl eConposi t eType.
Here's the implementation of Money Ty pe:

package org.starobjects.jpa.applib.usertypes;

i mport java. mat h. Bi gDeci nal ;

i mport java.sql . PreparedSt at enent ;
i mport java.sql.ResultSet;

i mport java.sql.SQ.Exception;

i mport org. hi bernate. Hi bernat e;

i mport org. hi bernate. engi ne. Sessi onl npl enent or;
i mport org. hibernate.type. Type;

i mport org. nakedobj ects. appl i b. val ue. Money;

public class MneyType extends | mutabl eConpositeType {

public O ass<Money> returnedC ass() {
return Money. cl ass;

public Qbject null Saf eCet (
final ResultSet resultSet,
final String[] nanes,
final Sessionlnplenentor session,
final Object owner) throws SQLException {
final BigDecimal anpbunt = result Set. getBi gDeci mal (names[0]);
if (resultSet.wasNull()) {
return null;
}
final String currency = resul tSet.getString(nanes[1]);
return new Money(anount. doubl eVal ue(), currency);

public void null Saf eSet (
final PreparedStatenment statenent,
final Object value,
final int index,
final Sessionlnplenentor session) throws SQLException {
if (value == null) {
statenment. set Nul | (i ndex, Hi bernate. Bl G DECI MAL. sql Type());
statenent.setNull (index + 1, Hi bernate. STRI NG sql Type());
} else {
final Money anpbunt = (Mney) val ue;
st at ement . set Bi gDeci nal (i ndex, anount.get Amount ());
statenent.setString(index + 1, anount.getCurrency());

public String[] getPropertyNanmes() {
return new String[] { "anount", "currency" };

public Type[] getPropertyTypes() {
return new Type[] { Hi bernate. Bl G DECI MAL, Hi bernate. STRING };

public Qbject getPropertyValue(final Object conponent, final int property) {
final Money nonetaryAnount = (Mney) conponent;
if (property == 0) {
return nonetaryAnount. get Amount () ;

30

Supporting Custom Value Types Composite Types (I mut abl eConposi t eUser Type)

} else {
return nonetaryAnmount. get Currency();
}
}

public void setPropertyValue(final Cbject conmponent, final int property, final Object
val ue) {

t hrow new Unsupport edOper ati onExcepti on("Mney is inmmutable");
}
}

This works in broadly the same way, with nul | Saf eGet () and nul | Saf eSet () used to read values
from SQL /write valuesto SQL. Theget Pr oper t yNanes() and get Propert yTypes() againdescribe
the structure of the value. The get Pr oper t yVal ue() alow specific properties of the value (such asthe
Money's currency) to be read; like reading a single column in the database. The set Pr oper t yVal ue()
meanwhile should always thrown an exception because value types should be immutable (replaced in
their entirety rather than mo